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Investigating how humans use their perceptual modalities while controlling a vehicle is important for the design of

new control systems and the optimization of simulatormotion cueing. For the identification of separate pilot response

functions to the different perceived cues, multiple forcing functions need to be inserted into the manual control loop.

An example of a task with multiple forcing functions is a combined target-following disturbance-rejection task,

where a target and disturbance signal are used to separate the human visual and vestibular motion responses. The

use ofmultiple forcing functions, however, also affects the nature of the control task andhow themotion cues are used

by the pilot to form a proper control action. This paper presents the results of an experiment where possible effects of

using multiple forcing functions on pilot control behavior in an aircraft pitch control task are investigated. The

results indicate that pilot performance and control activity are significantly lower when the relative power of the

target forcing function is increased. This is caused by a significant change inmultimodal pilot control behavior.With

an increase in relative target power, the visual-perception gain is reduced and the visual time delay becomes higher.

Themotion-perception gain reduces if both forcing functions have significant power. It is also found thatmultimodal

pilot control behavior in a pure target or disturbance task can be analyzed by adding a small additional disturbance

or target signal, respectively. In this case, the effects on control behavior are found tobeminimal,while still being able

to accurately estimate the parameters of the multichannel pilot model.

Nomenclature

A = sinusoid amplitude, deg
e = tracking error signal, deg
f = forcing function signal, deg
fd = disturbance forcing function, deg
ft = target forcing function, deg
H�j!� = frequency response function, -
H�s� = transfer function, -
J = criterion function, rad2

Km = motion-perception gain, -
Kn = remnant intensity, -
Kv = visual-perception gain, -
N = number of points, -
n = pilot remnant signal, deg
nd = disturbance forcing function frequency integer

factor, -
nt = target forcing function frequency integer

factor, -
p = relative forcing function power, -
Q = optimal control performance weighting

factor, -

R = optimal control effort weighting factor, -
s = Laplace variable, -
TA1, TA2 = forcing function filter time constants, s
Tlag = visual lag time constant, s
Tlead = visual lead time constant, s
Tsc1, Tsc2, Tsc3 = semicircular-canal time constants, s
Tm = measurement time, s
t = time, s
u = pilot control signal, deg
�e = elevator deflection, deg
�n = remnant filter damping, -
�nm = neuromuscular damping, -
� = pitch angle, deg
� = standard deviation
�m = motion-perception time delay, s
�v = visual-perception time delay, s
’m = phase margin, deg
� = sinusoid phase shift, rad
! = frequency, rad s�1

!c = crossover frequency, rad s�1

!n = remnant filter break frequency, rad s�1

!nm = neuromuscular frequency, rad s�1

Subscripts

d = disturbance
t = target

I. Introduction

I N MOST vehicular control tasks, human operators use multiple
cues to achieve a proper control action. For example, in an aircraft

pitch control task, pilots visually perceive the pitch angle from their
primary flight display and, due to the physical aircraft pitch rotation,
also sense changes in aircraft pitchwith their vestibular system [1]. In
a skill-based continuous control task, these cues are processed by the
central nervous system,where appropriateweight is put onvisual and
vestibular responses. Modeling this process can give insight into the
relative importance of the different motion cues and is important
in, for example, flight simulator fidelity research. As the simulation
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ofmotion cues is constrained by the limitations of the simulator, such
knowledge can be used to optimize simulator motion cueing [2].

When modeling the perceptual modalities of the pilot, a multi-
channel model is often used that takes the perceived cues as inputs.
The output of this quasi-linear model is the summation of pilots’
linear responses to each perceived cue, supplemented with a remnant
signal that accounts for the nonlinear behavior [3,4]. The linear
response functions consist of sensor dynamics, gains, time constants,
time delays, and neuromuscular dynamics. For accurate estimation
of these parameters, current identification techniques require the
different inputs of the model to be uncorrelated and sufficiently
exciting. To achieve this, an independent forcing function signal is
inserted into the closed-loop system for every pilot-model input
[4–7]. The location where the forcing functions are inserted into the
closed-loop system, and the intensity of the individual forcing
functions, can affect the task of the pilot and how the differentmotion
cues are used in the control task.

Two classical types of manual control tasks that are frequently
studied in literature are disturbance-rejection and target-following
tasks. Motion cues have been shown to have different functions in
these two types of tasks. In a disturbance-rejection task, the visual
and vestibular inputs to the pilot are driven by the same system
output, yielding a task in which the visual and vestibular modalities
work in parallel. In a target-following task, the physical motion cues
are directly related to the control action of the pilot, as this action is
the only input to the controlled dynamics. Different effects of motion
cues on pilot control behavior in disturbance-rejection and target-
following tasks have indeed been observed in several experimental
studies [8–11].

In these classical single forcing function tasks [3,9–14], the
relation between the visual and vestibular cues and the pilot control
action is evident. Reliable identification of pilots’ visual and
vestibular responses is, however, not possible for such tasks due to
the use of only one forcing function signal. A strategy that has
been used in many experiments [1,4,12,15,16] solely to facilitate
multichannel pilot-model identification is to use both target and
disturbance forcing functions in a combined target-following and
disturbance-rejection task. In such a combined control task, the
insertion of two forcing functions decreases the coherence between
both cues and may introduce a cue conflict. By limiting the
magnitude of the additional forcing function signal, the preferred
target-following or disturbance-rejection portion of the task can be
made dominant, minimizing possible cue conflicts [1,4]. However, a
tradeoff has to be made, as reducing the additional signal’s power
below a certain level will again result in unreliable identification
results.

Although the concept of using an additional forcing function with
relatively lowpower for themodeling ofmultiplemodalities has been
used in many experiments, the minimum power of this additional
signal, required for accurate estimation results, has never been
determined. Additionally, it is crucial to know if adding an extra
signal, even with low power, significantly changes control behavior
compared to the single forcing function tasks. These topics are
studied in this paper.

An experiment was performed in the SIMONA Research
Simulator (SRS) of the Delft University of Technology in which the
influence of multiple forcing functions on pilot performance and
control behavior is investigated for an aircraft pitch control task. For
this purpose, the relative power of the target and disturbance forcing
functions was systematically varied over the different experimental
conditions. In a similar experiment studying the same topics for a
double-integrator roll control task, no significant effect on multi-
modal pilot control behavior was found. Tracking performance and
control activity, however, were found to be significantly affected
[17]. The use of more accurate identification techniques for the
estimation of the pilot-model parameters [7] for the experiment
discussed in the current paper may yield new insights into how pilot
control behavior is affected.

The paper is structured as follows. First, the multimodal pilot
modeling procedure used in this research will be discussed. Next, an
optimal control analysis is presented, which was performed to gain

some insight into the theoretically optimal use of motion cues for a
systematic change in relative power of target and disturbance forcing
functions. After this, the experiment setup and results will be
discussed. The paper ends with a discussion and conclusions.

II. Multimodal Pilot Modeling

Pilot manual control behavior in skill-based continuous control
tasks can be described by relatively simple control-theoretic pilot
models [3]. For vehicle control tasks in which pilots use multiple
perceptual modalities (for instance, visual and vestibular), modeling
of control behavior is, however, not straightforward and poses
requirements on the forcing functions that are used to induce control
actions [4–7]. This section describes the control task, multichannel
pilot model and forcing functions used in this paper for investigating
how changes in relative target and disturbance signal power affect
multimodal pilot control behavior and its identification from
measurement data.

A. Control Task

The closed-loop compensatory aircraft pitch attitude control task
studied in the experiment described in this paper is depicted in Fig. 1.
This control task is similar to the task used in a previous experiment,
in which the influence of pitch and heavemotion cues onmultimodal
pilot control behavior was investigated [1].

For the controlled aircraft pitch dynamics, indicated with H�;�e
in

Fig. 1, a linearized model of the Cessna Citation I Ce500, trimmed at
an altitude of 10,000 ft and a true airspeed of 160 kt, is used. The
transfer function for these dynamics is given by

H�;�e
�s� � �10:6189 s� 0:9906

s�s2 � 2:756s� 7:612� (1)

A Bode plot of the controlled dynamics is given in Fig. 2. As
indicated in the figure by the gray lines, the controlled aircraft
dynamics resemble those of a single integrator for frequencies below
1 rad=s and a double integrator for frequencies above 3 rad=s.
Between 1 rad=s and the short period peak at !sp � 2:76 rad=s the
dynamics approximate a gain.

For identification of both pilot visual and vestibular responses
(Hpe andHp� in Fig. 1), two forcing functions need to be inserted into
the closed-loop control task. A target forcing function ft is inserted
by displaying the error e between the target and the actual pitch angle
� on a visual compensatory display. A disturbance forcing function
fd is used as a physical disturbance on the aircraft dynamics. Pitch
rotational motion is generated by the simulator motion base and may
be perceived by the pilot through his vestibular system. The heave
motion cues associated with a change in aircraft pitch attitude [1]
were not provided by the simulator.

If the power of the target is zero, the task is a pure disturbance task
and the visual and physical motion cues, that is, the two inputs of the
pilot in Fig. 1, are similar. If the power of the disturbance is zero, the
task is a pure target task. In this case, the pilot control signal is the
only input to the controlled dynamics and the target signal induces a
difference between the information that is present in the visual and
physical motion cues.

Hθ,δe

f t u
−

e θ
f d

θ

n

Hpe

Hpθ

δe

−

pilot

Fig. 1 Schematic representation of a closed-loop compensatory

aircraft pitch control task.
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B. Multimodal Pilot Model

The structure of an appropriate multimodal pilot model for the
control task given in Fig. 1 is given in Fig. 3. The model contains a
visual and a vestibular input (e and �) and two parallel channels (Hpe

andHp�) tomodel the visual and vestibular modalities separately [9].
A remnant signal n is added to the output of the linear channels to
account for the nonlinear behavior of the pilot.

Human operators adapt their control behavior to the controlled
dynamics H�;�e in such a way that the open-loop dynamics in the
crossover region can be described by a single integrator and a time
delay [3]. With the aircraft pitch dynamics as depicted in Fig. 2 and
typical crossover frequencies between 2 and 4 rad=s for this type of
control task, the pilot needs to generate lag to compensate for the
gain dynamics around the short period frequency. Subsequently, a
quadratic lead term is needed to compensate the lag and to achieve the
required lead compensation for the double-integrator dynamics at
higher frequencies [1]. This results in the pilot equalization given in
Fig. 3.

The visual-perception channelHpe contains the visual-perception
gain Kv, a visual lead time constant Tlead, a visual lag time constant
Tlag, and a visual-perception time delay �v. The pitch motion-
perception channel Hp� includes the dynamics of the semicircular
canalsHsc, the motion-perception gainKm, and a motion-perception
time delay �m. In both channels, the control action of the pilot is
affected by the neuromuscular dynamics Hnm, given by

Hnm�j!� �
!2
nm

!2
nm � 2�nm!nmj!� �j!�2

(2)

with �nm the neuromuscular damping and !nm the neuromuscular
frequency. The semicircular-canal dynamics in the pitch motion-
perception channel are given by

Hsc�j!� �
1� j!Tsc1

�1� j!Tsc2��1� j!Tsc3�
(3)

with Tsc1 � 0:11 s, Tsc2 � 5:9 s, and Tsc3 � 0:005 s the time
constants of the semicircular-canal model. These values are taken
from previous research [10] and are fixed in the parameter estimation
procedure. Note that due to the integrating action of the semicircular-
canal dynamics as defined by Eq. (3), the vestibular channel
effectively provides a second source of lead information in addition
to the contribution of the visual lead constant, Tlead. A portion of
the required lead generation may thus be taken over by a pilot’s
vestibular system if motion cues are available. A significant
reduction in visual lead time constant when physical motion cues
were made available has been observed in previous experiments
where similar control tasks were considered [1].

With the time constants of the semicircular-canal model kept
constant, a total of eight pilot-model parameters are left to be
estimated (Kv, Tlead, Tlag, �v, Km, �m, �nm, and !nm).

C. Forcing Functions

For the closed-loop pitch attitude control task as defined in Fig. 1,
the target and disturbance signals are designed as quasi-random sum-
of-sine signals with sines at multiple frequencies. The random
appearance of such multisine signals induces skill-based feed-
back control behavior, while allowing the experiment designer to
accurately define the forcing function properties in the frequency
domain. The forcing functions were generated according to

fd;t�t� �
��������
pd;t
p XNd;t

k�1
Ad;t�k� sin�!d;t�k�t� �d;t�k�� (4)

where the subscripts d and t indicate the disturbance or target forcing
function, respectively. In Eq. (4), A�k�, !�k�, and ��k� indicate the
amplitude, frequency, and phase of the kth sine in fd or ft. N
indicates the number of sines in the signals andp is the relative power
fraction, which is between 0 and 1. Both fd and ft consisted of 10
individual sinusoids, but each had a different amplitude, frequency,
and phase distribution.

The measurement time of an individual experimental measure-
ment run is Tm � 81:92 s. The sinusoid frequencies!d�k� and!t�k�
were all integer multiples of the measurement time base frequency,
!m � 2�=Tm � 0:0767 rad=s. The selected sinusoid frequencies
and the corresponding integer factors of !m, nd and nt, can be found
in Table 1.

To determine the amplitudes of the individual sines for both the
target and the disturbance forcing function, a second-order low-pass
filter was used:

HA�j!� �
�
1� TA1j!
1� TA2j!

�
2

(5)

with TA1 � 0:1 s and TA2 � 0:8 s. The absolute value of the filter at a
sinusoid frequency gives the corresponding sinusoid amplitude. The
reducedmagnitude of the amplitudes at the higher frequencies yields
a tracking task that is not overly difficult. The amplitude distributions
Ad�k� andAt�k�were scaled to attain equal variances for fd and ft of
2:0 deg2.

To determine the forcing function phase distributions, a large
number of random sets of phases were generated. The two sets of
phases that yielded signals with a probability distribution closest to a
Gaussian distribution, without leading to excessive peaks, were
selected for fd and ft [18].

The disturbance signal was inserted into the closed-loop control
task before the controlled aircraft dynamics by adding it to the
pilot’s control signal u, as can be verified from Fig. 1. Therefore, the
disturbance signal amplitudes and phases need to be prefiltered with
the inverse of the aircraft model pitch response H�;�e

�j!�. This
ensured that fd had similar properties as ft after passing the
controlled dynamics.

In this research, the relative power of both forcing functions is
varied between different experimental conditions. The total power
inserted by the forcing functions is always equal to 2:0 deg2. This
implies that the following relation for the relative power of the

ω, rad s−1

ω, rad s−1

|H
|,

-

ωsp

a) Magnitude

Hθ,δe ( jω)

K/ ( j )
K/ ( jω)2

10-1 100 10110-2
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100
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H
,
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g
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ω

Fig. 2 Bode plots of controlled aircraft dynamics.
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Fig. 3 Multichannel pilot-model structure.
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disturbance and target holds: pd � 1 � pt, where pt varies between
zero and one. For pt � 0, the target will be zero and the control task
will be a pure disturbance task. Forpt � 1 all forcing function power
in the control loopwill be provided by the target forcing function and
the task will be a pure target task. Because of this relation between
relative target and disturbance power, it should be noted that when an
increase in target power is mentioned in the paper without any
mention about the disturbance power, the disturbance power
consequently decreases.

Figure 4 depicts a part of a time trace for both forcing function
signals with pd and pt equal to 1. Note that the disturbance signal as
depicted in the figure is the signal prefiltered with the inverse of the
controlled dynamics. The properties of the target and disturbance
signals are summarized in Table 1.

III. Optimal Control Analysis

An optimal control analysis was performed to determine the
theoretically optimal pilot-model settings for a change in relative
power of the forcing functions. For this analysis, the target and
disturbance forcing function power is systematically varied between
0 and 100%; that is, the task is changed from a pure disturbance task
to a pure target task, with combined target-following disturbance-
rejection tasks in between. Because of the different role motion cues
play in target following and disturbance rejection, optimal weighting
of pilot visual and vestibular responses, for instance in the generation
of pilot lead, may be different for both tasks. This analysis will give
some insight into the optimal use of visual and physical motion cues
for the different forcing function power settings.

A. Setup of the Optimal Control Analysis

In the optimal control analysis, the closed-loop control structure
depicted in Fig. 1 is used. The pilot is represented by the full pilot
model given in Fig. 3. The control law for this optimal control
problem is given by

u�Hpee �Hp���Hnn (6)

with n a zero mean Gaussian white noise signal andHn the remnant
filter given by

Hn�j!� �
Kn!

3
n

��j!�2 � 2�n!nj!� !2
n��j!� !n�

(7)

The parameters in the remnant filter are the remnant intensity Kn,
the remnant break frequency !n, and a damping coefficient �n. This
remnant filter characteristic was found experimentally in previous
research [7]. The parameters in the optimal control law are computed
by minimizing the following criterion function:

J� Q�2�e�|��{z��}
performance

� R�2�u�|��{z��}
effort

(8)

In the criterion function, the constant factors Q and R control the
relative weighting of the minimization of the variance of the error
(tracking performance) and the variance of the control signal (control
effort), respectively.

As the optimization problem is highly overdetermined (the pilot
model, including the remnant filter consists of 11 parameters),
some parameters need to be fixed. As the change in relative forcing
function power will change the relation between the different pilot-
model inputs, it is expected that the equalization of the pilot model
will be mostly affected. For this reason the parameters of the pilot
equalization are optimized, while the rest of the parameters are
fixed. The values of these fixed parameters are as follows:
�v � 0:27 s, �m � 0:18 s, �nm � 0:18, !nm � 11:56 rad s�1, Kn�
4:0, �n � 0:26, and !n � 12:7 rad s�1. The parameters are taken
from a previous human-in-the-loop experiment performed in the
SRS, in which the same aircraft pitch control task was performed
[1,7]. The forcing functions in this experiment were identical to the
ones defined in Sec. II.C, with pt � 0:2 and pd � 0:8. The selected
value for the remnant intensity Kn ensures that 10% of the
variance of the control signal is caused by the remnant, as found
in previous research [1].

The optimal values for the visual-perception gain Kv, the motion-
perception gain Km, and the visual lead time constant Tlead are
determined by minimizing J as defined by Eq. (8). The lag time
constant Tlag was set to 2:4Tlead. This approximate relation was also
found for the experiment mentioned previously [1] and further
increases the probability of finding an optimal solution of the
optimization problem. The weighting factors Q and R of the cost
function were determined to provide values ofKv, Tlead, Tlag, andKm
that were very close to those found for the experiment described
in [1]. The values for Q and R were set to 10 and 1, respectively.

B. Results

The results of the optimal control analysis are depicted in Figs. 5
and 6. Figure 5 gives the optimal values of Kv, Tlead, and Km for a
change in forcing function power given the assumed control
structure. The vertical line at pt � 0:2 indicates the condition of
the experiment in [1], of which the data are taken for the fixed
parameters. Froma pure disturbance to a pure target task (pt from0 to
1), the visual and motion-perception gains decrease. As lead
information can result from either the integrating action of the
semicircular canals, the visual lead, or a combination of these, a

Table 1 Experiment forcing function properties

Disturbance, fd Target, ft
nd, � !d, rad s

�1 Ad, deg �d, rad nt, � !t, rad s
�1 At, deg �t, rad

5 0.383 0.385 �0:269 6 0.460 1.562 1.288
11 0.844 0.505 4.016 13 0.997 1.092 6.089
23 1.764 0.308 �0:806 27 2.071 0.493 5.507
37 2.838 0.201 4.938 41 3.145 0.265 1.734
51 3.912 0.212 5.442 53 4.065 0.178 2.019
71 5.446 0.263 2.274 73 5.599 0.110 0.441
101 7.747 0.352 1.636 103 7.900 0.070 5.175
137 10.508 0.483 2.973 139 10.661 0.051 3.415
171 13.116 0.635 3.429 194 14.880 0.040 1.066
226 17.334 0.949 3.486 229 17.564 0.036 3.479

f(
t)

,
de

g

t, s

disturbance fd
target ft

0 5 10 15 20 25 30
-4

-3

-2

-1

0
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3

4

Fig. 4 Time trace of the disturbance and target forcing function signals

(pd � pt � 1).
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consequence of the decrease of the motion gain is an increase in the
visual lead time constant, as is also observed in Fig. 5.

Figure 6 gives the variance of the error signal and the variance of
the control signal, the pilot performance and control activity,
respectively. It can be seen that tracking performance decreases
(the variance of the error increases) and the control activity remains
approximately constant, as the control task is changed from pure
disturbance rejection to pure target following.

C. Discussion

For a pure disturbance task (pt � 0), the visual and physical
motion cues are equal. Because of this, and the fact that usingmotion
cues is a faster and more efficient way of generating lead (due to the
smaller motion-perception time delay, see Sec. III.A), it can be
expected that the perception gains are relatively high and the visual
lead is minimized. For a target task (pt � 1), the inputs to the pilot
model are not equal, that is, a cue conflict is introduced. It can be
expected that this results in a decrease of the perception gains and an
increase in visual lead, as lead information on the forcing function is
only available visually. The results found for the optimal parameters
in Fig. 5 support this.

Figure 6 indicates that the tracking performance is higher for a
disturbance task than for a target task. This is a result of the increased
perception gains for the disturbance task. The same result was found
in previous research that investigated the effect of different motion
cues on target and disturbance tasks [9]. A logical consequence of
the increase in performance would be an increase in control activity.
This result is, however, not found in the optimal control analysis.
Rather, a minimal increase in control activity can be observed.

IV. Experiment

To verify whether the differences in theoretically optimal control
behavior for target following and disturbance rejection as observed
from the optimal control analysis indeed represent typical trends for
human manual control behavior, a human-in-the-loop experiment
was performed. This experiment was designed to reveal possible

trends in manual control behavior when varying forcing function
settings from pure target to pure disturbance, and to compare control
behavior for relative target and disturbance forcing function power
settings as used in some previous experiments [1,2,4,6,16,19,20] to
control behavior for pure target-following and disturbance-rejection
tasks.

A. Method

The experiment performed for this research was highly similar to
the experiment described in [1]. As stated in Sec. II, the same
controlled element dynamics and quasi-random forcing function
signals were used in both experiments. Further important details of
the current experiment are described next.

1. Independent Variables

This experiment was designed to evaluate the effect of varying a
single independent variable: the proportion of target and disturbance
forcing function power in a compensatory control task. The eight
conditions of this experiment, numbered C1 to C8, are depicted in
Fig. 7. The dark gray portions of the bars in this graph indicate the
percentage of disturbance forcing function power for each condition;
the (upper) light gray portions indicate the percentage of power
accounted for by ft. The experimental conditions were selected to be
very similar to those evaluated in an earlier experiment [17].

As physical motion cues most significantly affect pilot control
behavior in a pure disturbance-rejection task, in many earlier piloted
tracking experiments where different modalities were modeled
separately, a disturbance-rejection task was used with an additional
target signal that had 20% of the total forcing function power
[1,2,4,6,16,19,20]. This relative forcing function power distribution
is represented by condition C3 in Fig. 7. To investigate if further
reduction of the target forcing function power would yield a task for
which multimodal pilot-model identification is still possible,
condition C2 was added. For a pure disturbance-rejection task the
pilot-model inputs are the same, yielding a highly overdetermined
identification problem. As this problem is less severe for a pure target
task, where the pilot inputs are not similar, no condition was added
between C7 and C8.

2. Apparatus

The experiment was performed in the SRS at Delft University of
Technology (see Fig. 8). Rotational pitch motion cues were provided
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Fig. 8 The SIMONA research simulator.
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by the 6 degree-of-freedomhydraulic hexapodmotion system during
all experiment runs. No washout filter was used and controlled
element pitch attitudes were presented 1-to-1. The center of rotation
was located at the upper gimbal point (UGP) of the simulator. The
UGP is located 1.2075 m below the design eye reference point, that
is, 1.2075 m below the approximate location of the pilot’s head. No
heavemotion cueswere provided. The time delay associatedwith the
response of the SRS motion system has been experimentally
determined to be approximately 30 ms [21].

During the experiment, subjects were seated in the right pilot seat.
They controlled the Citation pitch dynamics using an electrical side
stick without breakout force and a maximum pitch deflection of
14 deg. Stick stiffness was set to 1:1 N= deg for deflections below
9 deg; at higher stick deflections the stiffness was increased to
2:6 N= deg. A simplified artificial horizon image (Fig. 9) was
projected on the right primary flight display in the SRS cockpit to
indicate the tracking error e, which subjects were to minimize during
the experiment. The primary flight display had an update rate of
60 Hz and a time delay (including the projection) of no more than
25 ms.

3. Participants and Instructions

Seven subjects were invited to perform this experiment. All
participants were male and their ages ranged from 23 to 47 years old.
Four of the participants were university staff members, who all had
experience as pilots of single or multi-engine aircraft. Two of them
were active Citation II pilots. The remaining three participants were
students at the Faculty of Aerospace Engineering. One of these
students had 119 flight hours in single engine aircraft; the others had
experience with manual vehicle control tasks from previous human-
in-the-loop experiments.

Before the start of the experiment, the objective of the experiment
was explained to the participants. They were told that they would be
performing a combined target-following and disturbance-rejection
task and that the relative power of the target and disturbance signals
would be varied over the eight different conditions depicted in Fig. 7.
The main instruction the participants received was that they should
attempt to minimize the pitch tracking error, that is, the signal e
presented on the visual display, within their capabilities.

4. Experimental Procedure

An individual experiment runwas defined to last 90 s, of which the
final 81.92 s were used as themeasurement data. Datawere logged at
a frequency of 100 Hz. Data from the first 8.08 s of each run were
logged, but discarded for analysis. From previous experiments [1] it
was known that 8 s is more than enough time for participants to
stabilize the controlled aircraft dynamics after the start of a run.

During the experiment, the participants’ tracking performance,
expressed in terms of the root mean square of the error signal e, was

recorded for each condition by the experimenter. When a
participant’s level of performance had clearly stabilized and six
repetitions of each condition had been collected at this stable
performance level, the experiment was terminated. No fixed number
of training runs was defined before the experiment. On average,
9 to 10 repetitions of each experimental condition were sufficient to
gather the measurement data for each subject. Typically, each
subject performed 24 runs, that is, three repetitions of all conditions,
in between breaks. This allowed each subject to complete the
experiment in approximately 4 h.

The experiment had a balanced Latin square design: the eight
conditions of the experiment were presented in quasi-random order.
Subjects were informed of their tracking score after each run to
motivate them to consistently perform the tracking task at their
maximum level of performance.

5. Dependent Measures

To investigate the effects of a systematic variation in target and
disturbance forcing function power as depicted in Fig. 7, a number of
dependent measures were considered to be of interest. First of all,
the variances of the recorded error signal e and control signal u
were calculated as measures of tracking performance and control
activity, respectively. In addition, the contributions of the target and
disturbance signal power to these overall signal variances were
determined using a spectral method as described in [8].

In addition to these signal properties, the multimodal pilot model
given in Fig. 3 was fitted to the time-domain data using a genetic
maximum likelihood (MLE) procedure [7]. The MLE method
requires the inputs of the pilot model to be sufficiently exciting
and informative to give accurate parameter estimates. To have
sufficiently exciting model inputs depends on the control task, the
controlled dynamics, and even the control strategy adopted by the
subjects. This requirement was not met for the pure disturbance and
target task in the current experiment, conditions C1 and C8. To
accurately estimate the model parameters for these tasks, some
parameters were fixed to values extrapolated from those found
for neighboring conditions with two forcing functions, for which
accurate estimates could be achieved, C2 and C3, and C6 and C7.
Using this strategy, reliable estimation of the remaining parameters
was guaranteed.

To evaluate the accuracy of the pilot model in the time domain, the
variance accounted for (VAF) was calculated using the measured
pilot control signal and the output of the linear pilot model [6].
The VAF gives the percentage of the measured pilot control signal
variance that can be explained by the linear response functions.
The remaining portion of the variance can be attributed to the pilot
remnant.

Changes in pilot-model parameters were used to quantify changes
in pilot control strategy. In addition, the effect of these changes in
control behavior on the attenuation of the target and disturbance
signals was evaluated from the target and disturbance open-loop
responses, respectively [8]. In the frequency domain, pilot per-
formance is determined by the crossover frequencies and phase
margins of the different open-loop responses. Using the pilot
response functions given in Figs. 1 and 3, the disturbance open-loop
response is determined by

Hol;d�j!� �
U�j!�
�e�j!�

� �Hpe�j!� �Hp��j!��H�;�e
�j!� (9)

and the target open-loop response function is given by

Hol;t�j!� �
��j!�
E�j!� �

Hpe�j!�H�;�e
�j!�

1�Hp��j!�H�;�e
�j!� (10)

For a pure target and disturbance task, only one of the open-loop
frequency response functions is defined, as there is only one forcing
function present. The disturbance and target crossover frequencies,
!c;d and !c;t, are the frequencies where the magnitude of the
disturbance and target open-loop responses cross the line with a

e

Fig. 9 Compensatory display.
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magnitude of 1. The corresponding phase margins, ’m;d and ’m;t, are
the phase differences with �180 deg at the crossover frequencies.

B. Hypotheses

Previous experiments have shown that when physical motion cues
are available, significantly better tracking performance and higher
control activity are observed for a disturbance-rejection task
compared to the target-following task [11,17]. The results of the
optimal control analysis of Sec. III also show the performance
increase, but indicate slightly decreased control activity for higher
disturbance forcing function power levels. This disagreement
between experimental and theoretical results is thought to be at least
partly due to the assumptions made in the optimal control analysis.
Therefore, as found in the previous experiments, tracking per-
formance and control activity are expected to increase in the current
experiment with increasing disturbance forcing function power.

For changes in manual control behavior, the optimal control
analysis suggests that for increasing levels of target forcing function
power, more pilot lead will be generated from visual cues. For
disturbance rejection, it is better to acquire the required lead from
physical motion cues instead. Therefore, an increase in the value of
the visual lead constantTlead and a decrease in the value of themotion
gain Km (see Sec. II.B) is expected to be found from pilot-model
identification results with increasing target forcing function power.
Based on the findings from the experiment described in [17],
however, it is expected that the changes in control behavior over the
different conditions will be relatively small in magnitude.

V. Results

This section presents the combined results of all seven subjects
who participated in the experiment. A repeated-measures analysis of
variance (ANOVA) was performed to identify significant trends in
the data. Significant linear or quadratic trends, if present in the
presented data, are indicated with gray lines in all graphs shown in
this section.

A. Tracking Performance and Control Activity

The variances of the error and control signals are given in Fig. 10.
For every condition the mean data over all runs of all subjects are
shown. The variance is decomposed into the variance components
due to the input signals of the control loop [8]. The variance
components due to the target and disturbance signals can be
calculated using the power spectral density functions of the error and
control signals at the input frequencies of the target and disturbance
forcing functions, respectively. The remnant component is the
difference between the total variance in the signal and the sum of the
target and disturbance components.

In Fig. 10a it can be seen that the variance of the error increases,
that is, performance degrades, when the variance of the target signal
is increased. The ANOVA indicates that this effect is highly
significant [F�7; 42� � 83:401, p < 0:05]. The figure indicates an
almost perfect linear trend across the conditions, which is confirmed
by polynomial contrasts [F�1; 6� � 131:772, p < 0:05]. When
inspecting the variance components, it can be seen that the variance

due to the target signal increases much faster than the variance due to
the disturbance decreases, causing the increase in the total variance of
the error signal. The remnant variance in the error signal remains
approximately constant.

To further investigate these trends in the variance of the error
signal, the percentage of the variances induced by the target and
disturbance signals that are compensated for by the subjects have
been calculated and are given in Fig. 11. The error bar plot gives the
means and 95% confidence intervals for all subjects. The data are
adjusted using the subject means to compensate for the between-
subject variability. Note that, as explained in Sec. II.C, the total
variance inserted by the target and disturbance forcing function is
2:0 deg2 for all conditions.

Figure 11 shows that the percentage of the variance compensated
for remains constant for all conditions for both the disturbance and
the target components. This result is supported by the ANOVA
[F�6; 36� � 1:390, p > 0:05 and F�6; 36� � 1:271, p > 0:05].
Furthermore, it can be seen that disturbance errors are attenuated
much more effectively (87%) than errors introduced by the target
signal (72%), a significant effect [F�1; 6� � 122:915, p < 0:05].

In Fig. 10b the variance of the control signal shows a significant
decrease if the power of the target signal is increased [F�7; 42��
6:131, p < 0:05]. The control signal variance changes quadratically
over the conditions [F�1; 6� � 13:337, p < 0:05]. The decrease in
control activity results in a decrease in tracking performance as seen
in Fig. 10a. This result was also found in a similar experiment [17].
It can be seen that the disturbance component in the control signal
decreases much faster than the target component increases. The
remnant component in the control signal remains more or less
constant and contributes 40–45% of the total variance in the control
signal, as also observed in previous experiments [1,6].

B. Pilot Control Behavior

For every subject and every condition, the pilot model of Fig. 3
was fit to the time-domain data using MLE. MLE requires the pilot
model to be converted to a state-space representation. For this
conversion the controller canonical form was used. The time delays
of the model were included using fifth order Padé approximations.
To reduce the influence of the remnant on the parameter estimates,
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the averaged time-domain data of five measurement runs were used
as input to the MLE method.

As explained in Sec. IV.A.5, accurate parameter estimates could
only be achieved for the conditions with both forcing functions
having power (C2–C7). For condition C1, the visual and physical
motion-perception delays were fixed. For the pure target-following
task (C8), the delays and the neuromuscular frequency were fixed.
The fixed parameters for the pure disturbance and target task were
extrapolated from the neighboring conditions C2 andC3, andC6 and
C7, respectively.

1. Pilot-Model Parameters

The identified pilot frequency response functions, Hpe and Hp�,
for all conditions averaged over all subjects are given in Fig. 12.
The observed changes in control behavior over the experimental
conditions were highly similar for all subjects. As indicated by the
arrow in Fig. 12a, only a clear trend in the magnitude of the pilot
visual response can be observed.

The means and 95% confidence intervals of the multimodal pilot-
model parameters estimated with the MLE method are given in
Fig. 13. The data are adjusted for between-subject variability.
Significant trends are indicated by the gray lines.

Figure 13a shows a clear decrease invisual gain as the power of the
target forcing function is increased. The ANOVA shows that the
effect is significant [F�7; 42� � 8:592, p < 0:05] and polynomial
contrasts indicate the trend is linear [F�1; 6� � 15:134, p < 0:05].
This decreasing trend in the visual gain, which is also apparent from
Fig. 12a, can be explained by the increasing cue conflict with the
physical motion cues as the target power increases.

The pitch motion-perception gain first decreases as more target
power is inserted into the control loop, but then increases again when
the target becomes dominant, as can be seen in Fig. 13b. This effect is
significant [F�7; 42� � 3:114, p < 0:05] and the trend is indeed
quadratic [F�1; 6� � 34:987,p < 0:05]. The higher gain for the pure
disturbance task (C1) is caused by the fact that the visual and physical
motion cues are identical. Next, as the cue conflict increases due to
the increasing target power (C2–C5), the relation between the two
cues becomes less clear and the physical motion gain decreases.
If the target power becomes dominant (C6–C7), the relation of the
physical motion cues with the pilot control input becomes stronger,
resulting in an increasing motion-perception gain. Finally, for the

pure target-following task (C8), the motion cues are completely
related to the pilot control signal and the magnitude of the motion-
perception gain is almost equal to the magnitude for the pure
disturbance task. This experimental result was not anticipated for by
the results of the optimal control analysis.

Figure 13c reveals an opposite trend to themotion-perception gain
for thevisual lead time constant. However, this trend is not significant
according to the ANOVA analysis [F�7; 42� � 2:055, p > 0:05].
This is probably caused by the increased variance in the estimates for
conditions C1 and C8. The opposite trend compared to the motion-
perception gain is an obvious result, as visual lead and lead resulting
from the integrating action of the semicircular canals are inter-
changeable. In Fig. 13d no trend is observed for the visual lag
time constant and this is also confirmed by the ANOVA analysis
[F�7; 42� � 0:789, p > 0:05].

The visual-perception time delay significantly increases when
the target forcing function power increases [F�7; 42� � 3:854,
p < 0:05]. As can be verified from Fig. 13e this trend is linear
[F�1; 6� � 9:575, p < 0:05]. As the conflict between the visual and
physical motion cues increases, it takes more time to process the
visual cues. Figure 13f shows that the pitch motion-perception time
delay remains constant [F�7; 42� � 0:631, p > 0:05].

According to Fig. 13g, the neuromuscular damping shows a
similar trend as the motion-perception gain when the target power is
increased. However, this effect is not significant [F�7; 42� � 2:292,
p > 0:05]. The neuromuscular frequency is significantly affected by
the change in forcing function power [F�7; 42� � 3:545, p < 0:05].
There is a significant linear increasing trend [F�1; 6� � 7:839,
p < 0:05], as can be seen in Fig. 13h.

2. Variance Accounted For

Figure 14 illustrates themeans and 95%confidence intervals of the
VAF for all conditions. The data are adjusted using the subject means
to compensate for the between-subject variability. Note that the VAF
is between 85 and 90% for all conditions. This implies that 85 to 90%
of the variance of the measured control signals can be explained by
the linear pilot model, the remaining 10 to 15% is pilot remnant. This
percentage of pilot remnant in the control signal is lower compared to
the value found in Sec. V.A. This is caused by averaging the time-
domain data for the MLE method, reducing the remnant component
in the signals. The VAFs for the pure target and disturbance tasks are
equal to the VAFs found for the remaining conditions, indicating that
fixing some of the parameters did not affect the accuracy of themodel
fit in the time domain.

3. Disturbance and Target Open-Loop Response Functions

Figure 15 gives the disturbance and target open-loop response
functions, including the crossover frequencies and phasemargins for
condition C5 of subject 2. The open-loop estimates are constructed
using the estimated pilot frequency response functions and Eqs. (9)
and (10). However, the open-loop frequency response functions can
also be calculated analytically using the Fourier coefficients of u, �e,
�, and e at the input frequencies of the forcing functions. The
analytically calculated disturbance and target open-loop responses
are also given in Fig. 15 and indicate that the MLE estimates have a
high accuracy in the frequency domain.

The means and 95% confidence intervals of the disturbance and
target crossover frequencies and phase margins are given in Fig. 16.
The between-subject variability is removed by adjusting the data
with the subject means. The figure shows that increasing the target
forcing function power decreases the disturbance crossover fre-
quency and consequently increases the disturbance phase margin.
The ANOVA analysis indicates that the decrease in crossover
frequency is significant [F�6; 36� � 27:699, p < 0:05] with a linear
trend [F�1; 6� � 39:476,p < 0:05], but the increase in phasemargin
is not [F�6; 36� � 4:429, p > 0:05]. The target crossover frequency
and phase margin remain constant when the power of the forcing
functions is varied [F�6; 36� � 2:054, p > 0:05 and F�6; 36��
1:149, p > 0:05].
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Figure 16 shows that for the pure disturbance-rejection task, for
which the physical motion cues are fully correlated with the visual
cues, the disturbance crossover frequency is found to be the highest.
When the power of the target forcing function increases, the

correlation between the cues becomes smaller and the disturbance
crossover frequency is reduced. The disturbance phase margin is
found to increase, indicating increased stability margins for the
disturbance-rejection loop. The target crossover frequency and phase
margin are not affected by the forcing function power settings.
These results were also found in a previous experiment [17].

VI. Discussion

Seven subjects participated in an experiment that investigated the
effects of forcing function power settings on pilot performance and
control behavior in a combined target-following disturbance-
rejection pitch control task. The experiment was performed in the
SIMONA Research Simulator at Delft University of Technology. In
eight experimental conditions, the pitch control task was varied from
a pure disturbance task to a pure target task, with combined tasks in
between.
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Overall, pilot performance degraded significantly for tasks with
higher power of the target forcing function. This is a result of the
higher performance in decreasing the disturbance variance compo-
nent in the error signal compared to the target variance component,
and can be explained by the fact that the disturbance signal directly
influences the physical motion cues. Physical motion cues provide
faster lead information on the effect of the disturbance signal, as
compared to visual lead, increasing performance. In addition to the
decrease in overall performance, pilot control activity is also found to
decrease.

The results of the MLE parameter estimation procedure indicate
that multimodal pilot control behavior is significantly affected by the
power settings of the target and disturbance signals. When the power
of the target forcing function becomes higher, the relation between
the visual and physical motion cues becomes less evident and
an increasing cue conflict arises. The resulting effect is a decrease in
visual-perception gain and an increase in visual-perception time
delay. Themotion-perception gainfirst decreases, butwhen the target
power becomes dominant, increases again. The opposite effect is
seen for the visual lead time constant, as the visual lead and the lead
resulting from the integrating action of the semicircular canals are
interchangeable. With an increase in target forcing function power,
the performance in the attenuation of the disturbance error decreases,
as is seen by a decrease in disturbance crossover frequency.

The optimal control analysis proved to be helpful in understanding
the theoretically optimal use of the differentmotion cues for a change

in relative power of the forcing functions, giving the limitations of the
pilot. The decrease in tracking performance and visual-perception
gain were predicted correctly. Also, the initial response of the visual
lead time constant and the physicalmotion-perception gain proved to
be correct. The parabolic trend in the motion-perception gain and the
visual leadwas not predicted correctly, whichwasmost likely caused
by the fact that some of the parameters that were fixed in the optimal
control analysis (for example, the visual-perception time delay) were
seen to change significantly in the experiment. The initial response
that was predicted correctly is near the condition that was used to fix
some of the parameters in this analysis. In addition, the cost function
weighting factors were also fixed and optimized for one condition.
It can be expected that as the relation between the motion cues
changes, also the internal weighting of the different cues and the
control signal changes. These two factors show that due to the many
assumptions required to obtain a solvable optimization problem, the
use of the results of such a theoretical analysis is limited.

Althoughmarked changes in pilot control strategy are found in the
experimental results, the variations in the multimodal pilot-model
parameters are only very small. For some parameters the change in
magnitude for different experimental conditions is just on the order
of 1%. This warrants the use of parameter estimation techniques
that can guarantee very accurate parameter estimates, such as the
MLE procedure adopted here. In an earlier experiment investigating
the influence of forcing function power settings on pilot control
behavior, no significant change in control behavior was found [17].
This could have been because of the less accurate parameter
estimation techniques used in this research.

No accurate parameter estimates could be achieved for the pure
target and disturbance tasks without reducing the number of free
parameters in the optimization problem. This is caused by the general
requirement of the parameter estimation techniques that both inputs
to the pilot model should be sufficiently exciting. When calculating
the pilot responses from Fourier coefficients it is even required that
the number of forcing functions that need to be inserted into the
control loop equal the number of pilot-model inputs. As neighboring
conditions for which an accurate fit was possible were available for
this experiment, the data from these conditions were used to fix the
visual and pitch motion-perception time delays and the neuro-
muscular frequency. This allowed for an accurate estimate of the
remaining parameters for the pure target and disturbance taskwith an
equally high variance accounted for as for the conditions with two
forcing functions.

Experimental measurements of the effects of physical motion cues
on pilot control behavior during target following and disturbance
rejection are not straightforward, as for pure target-following
and disturbance-rejection tasks, multimodal pilot control behavior
cannot be accurately estimated. In many previous experiments, this
was solved by adding a disturbance or target signal with relatively
low power in addition to the original target or disturbance signal,
respectively. The results of the experiment described in this paper
indicate that this strategy can indeed be used, as such an additional
signal was found to have only a relatively small effect on pilot
performance and control behavior. The experiment also revealed that
the additional signal can have very little power, thereby minimizing

Fig. 15 Open-loop frequency response functions (subject 2, C5).
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the interference with the dominant task, while still allowing for
accurate estimation of pilot-model parameters. Using a target signal
with 10% of the total power in addition to a disturbance with 90% of
the total power results in multimodal pilot control behavior that is
highly similar to control behavior in a pure disturbance task.

VII. Conclusions

In a combined target-following disturbance-rejection aircraft pitch
control task, multimodal pilot control behavior is significantly
affected by the relative power settings of the target and disturbance
forcing functions. With an increase in relative target power, the cue
conflict between the visual and physical motion cues increases. This
causes a reduction in the visual-perception gain, while the visual-
perception time delay becomes higher. The motion-perception gain
decreases, but is found to increase again if the target power becomes
dominant. As the lead information is the result of the integrating
action of the semicircular canals, the change in physical motion gain
is counteracted by an opposite trend in the visual lead time constant.
The result of this change in control strategy when increasing the
target forcing function power is a reduction in tracking performance
and control activity. The reduced performance is also apparent
from the decrease in disturbance crossover frequency, indicating a
decreased attenuation of the disturbance errors in the frequency
domain. Despite these effects, multimodal pilot control behavior in a
pure target-following or disturbance-rejection task can be evaluated
by using a combined target-following disturbance-rejection taskwith
an additional signal with relatively small magnitude. In this case,
control behavior is highly comparable to the single forcing function
tasks, while still allowing for accurate estimation of the multimodal
pilot-model parameters.
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